556 research outputs found

    Numerical Quantum Field Theory on the Continuum and a New Look at Perturbation Theory

    Get PDF
    The Source Galerkin method finds approximate solutions to the functional differential equations of field theories in the presence of external sources. While developing this process, it was recognized that approximations of the spectral representations of the Green's functions by Sinc function expansions are an extremely powerful calculative tool. Specifically, this understanding makes it not only possible to apply the Source Galerkin method to higher dimensional field theories, but also leads to a new approach to perturbation theory calculations in scalar and fermionic field theories. This report summarizes the methodologies for solving quantum field theories with the Source Galerkin method and for performing perturbation theory calculations using Sinc approximations.Comment: Lattice2001(theorydevelop

    Inflaton Fragmentation and Oscillon Formation in Three Dimensions

    Full text link
    Analytical arguments suggest that a large class of scalar field potentials permit the existence of oscillons -- pseudo-stable, non-topological solitons -- in three spatial dimensions. In this paper we numerically explore oscillon solutions in three dimensions. We confirm the existence of these field configurations as solutions to the Klein-Gorden equation in an expanding background, and verify the predictions of Amin and Shirokoff for the characteristics of individual oscillons for their model. Further, we demonstrate that significant numbers of oscillons can be generated via fragmentation of the inflaton condensate, consistent with the analysis of Amin. These emergent oscillons can easily dominate the post-inflationary universe. Finally, both analytic and numerical results suggest that oscillons are stable on timescales longer than the post-inflationary Hubble time. Consequently, the post-inflationary universe can contain an effective matter-dominated phase, during which it is dominated by localized concentrations of scalar field matter.Comment: See http://easther.physics.yale.edu/downloads.html for numerical codes. Visualizations available at http://www.mit.edu/~mamin/oscillons.html and http://easther.physics.yale.edu/fields.html V2 Minor fixes to reference lis

    PSpectRe: A Pseudo-Spectral Code for (P)reheating

    Full text link
    PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. PSpectRe is optimized for the analysis of parametric resonance in the post-inflationary universe, and provides an alternative to finite differencing codes, such as Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and fourth-order (Runge-Kutta) time integrators. Given the same number of spatial points and/or momentum modes, PSpectRe is not significantly slower than finite differencing codes, despite the need for multiple Fourier transforms at each timestep, and exhibits excellent energy conservation. Further, by computing the post-resonance equation of state, we show that in some circumstances PSpectRe obtains reliable results while using substantially fewer points than a finite differencing code. PSpectRe is designed to be easily extended to other problems in early-universe cosmology, including the generation of gravitational waves during phase transitions and pre-inflationary bubble collisions. Specific applications of this code will be pursued in future work.Comment: 22 pages; source code for PSpectRe available: http://easther.physics.yale.edu v2 Typos fixed, minor improvements to wording; v3 updated as per referee comment

    Entropy of Anisotropic Universe and Fractional Branes

    Get PDF
    We obtain the entropy of a homogeneous anisotropic universe applicable, by assumption, to the fractional branes in the universe in the model of Chowdhury and Mathur. The entropy for the 3 or 4 charge fractional branes thus obtained is not of the expected form E^{{3/2}} or E^2. One way the expected form is realised is if p \to \rho for the transverse directions and if the compact directions remain constant in size. These conditions are likely to be enforced by brane decay and annihilation, and by the S, T, U dualities. T duality is also likely to exclude high entropic cases, found in the examples, which arise due to the compact space contracting to zero size. Then the 4 charge fractional branes may indeed provide a detailed realisation of the maximum entropic principle we proposed recently to determine the number (3 + 1) of large spacetime dimensions.Comment: Version 2: 21 pages. More discussion and references added. To appear in General Relativity and Gravitatio

    Inflation as a Probe of Short Distance Physics

    Get PDF
    We show that a string-inspired Planck scale modification of general relativity can have observable cosmological effects. Specifically, we present a complete analysis of the inflationary perturbation spectrum produced by a phenomenological Lagrangian that has a standard form on large scales but incorporates a string-inspired short distance cutoff, and find a deviation from the standard result. We use the de Sitter calculation as the basis of a qualitative analysis of other inflationary backgrounds, arguing that in these cases the cutoff could have a more pronounced effect, changing the shape of the spectrum. Moreover, the computational approach developed here can be used to provide unambiguous calculations of the perturbation spectrum in other heuristic models that modify trans-Planckian physics and thereby determine their impact on the inflationary perturbation spectrum. Finally, we argue that this model may provide an exception to constraints, recently proposed by Tanaka and Starobinsky, on the ability of Planck-scale physics to modify the cosmological spectrum.Comment: revtex, 8 pages, eps figures included, references adde

    Delayed Reheating and the Breakdown of Coherent Oscillations

    Full text link
    We analyze the evolution of the perturbations in the inflaton field and metric following the end of inflation. We present accurate analytic approximations for the perturbations, showing that the coherent oscillations of the post-inflationary condensate necessarily break down long before any current phenomenological constraints require the universe to become radiation dominated. Further, the breakdown occurs on length-scales equivalent to the comoving post-inflationary horizon size. This work has implications for both the inflationary "matching" problem, and the possible generation of a stochastic gravitational wave background in the post-inflationary universe.Comment: 18 pages, 5 figures, v2: references added, extended discussion in section

    A Back-reaction Induced Lower Bound on the Tensor-to-Scalar Ratio

    Full text link
    There are large classes of inflationary models, particularly popular in the context of string theory and brane world approaches to inflation, in which the ratio of linearized tensor to scalar metric fluctuations is very small. In such models, however, gravitational waves produced by scalar modes cannot be neglected. We derive the lower bound on the tensor-to-scalar ratio by considering the back-reaction of the scalar perturbations as a source of gravitational waves. These results show that no cosmological model that is compatible with a metric scalar amplitude of 105\approx 10^{-5} can have a ratio of the tensor to scalar power spectra less than 108\approx 10^{-8} at recombination and that higher-order terms leads to logarithmic growth for r during radiation domination. Our lower bound also applies to non-inflationary models which produce an almost scale-invariant spectrum of coherent super-Hubble scale metric fluctuations.Comment: 5 pages, version 3, minor changes from version
    corecore